Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Anthony C. Willis, ${ }^{\text {a }}$ Waleed K. Mahdi ${ }^{\mathbf{b}}$ and Mark G.
Humphrey ${ }^{{ }^{\text {b }}}$
${ }^{\text {a }}$ Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and ${ }^{\mathbf{b}}$ Department of Chemistry, Australian National University, Canberra, ACT 0200, Australia

Correspondence e-mail:
mark.humphrey@anu.edu.au

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.024$
$w R$ factor $=0.028$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

(OC-6-13)-Bis[5-bromo-2-(4-bromophenyldiazenyl)phenyl]dicarbonylruthenium(II) with mutually trans N-donor atoms

The title compound, $\left[\mathrm{Ru}\left(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{~N}_{2}\right)_{2}(\mathrm{CO})_{2}\right]$, possesses a distorted octahedral environment about the Ru atom, with two cyclometallated 4,4'-dibromoazobenzene ligands and two mutually cis carbonyl ligands. The donor atoms are arranged such that the N atoms are mutually trans and the aryl C atoms are trans to carbonyl ligands.

Comment

The title compound (I) has been prepared as a minor product from the reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and $4,4^{\prime}$-dibromoazobenzene in refluxing n-octane; the major product is the cluster complex $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Br}\right)_{2}(\mathrm{CO})_{9}$ (Willis et al., 2005). Two strong $\nu(\mathrm{CO})$ absorptions at 2047 and $1984 \mathrm{~cm}^{-1}$ in the IR spectrum of (I) are consistent with the presence of two mutually cis carbonyl groups. The crystal structure was investigated to ascertain the relative dispositions of the remaining C and N donor atoms of the two cyclometallated $4,4^{\prime}$-dibromoazobenzene ligands.

(I)

The complex possesses a distorted octahedral coordination at the Ru atom and the X-ray study confirms the cis-disposed carbonyl ligands (Fig. 1). The N atoms of the cyclometallated azobenzene ligands are mutually trans, and the aryl C atoms are trans to the carbonyl ligands.

For ruthenium complexes of this type, i.e. with cis monodentate ligands and two N, C-cyclometallated ligands, three different arrangements of the cyclometallated donor atoms are possible. An analogue containing azobenzene residues $\mathrm{Ru}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right)_{2}(\mathrm{CO})_{2}$ (Bruce et al., 1987) and a further minor product from the present reaction (Willis et al., 2006) possess one configuration, in which one N atom is trans to an aryl C , while the other N atom is trans to a carbonyl ligand, with the other aryl C trans to the remaining carbonyl ligand. The second possibility, in which each of the N atoms is trans to a carbonyl ligand, is seen in $\mathrm{Ru}\left(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}\right)_{2}(\mathrm{CO})_{2}$ (Patrick et al., 1983). Compound (I) has the third configuration, not previously observed for ruthenium complexes with ligands of this type.

Experimental

$\mathrm{Ru}_{3}(\mathrm{CO})_{12}(200 \mathrm{mg}, 0.31 \mathrm{mmol})$ was added to a solution of $4,4^{\prime}-$ dibromoazobenzene ($210 \mathrm{mg}, 0.62 \mathrm{mmol}$) in n-octane (30 ml), and the mixture heated at reflux for 4 h . The resulting brown solution was taken to dryness on a rotary evaporator, and the residue dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca 3 ml) and applied to preparative thin-layer chromatography plates. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petrol ether (1/9) gave four bands and a heavy baseline: band 1 was yellow $\left(R_{\mathrm{F}}=\right) / 4$; band 2 was orange ($R_{\mathrm{F}}=0.52$); band 3 was yellow ($R_{\mathrm{F}}=0.21$); band $4\left(R_{\mathrm{F}}=\right.$ 0.10) was yellow. The contents of band 4 were identified as $\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{~N}_{2}\right)_{2}$, compound (I), (50 mg, 19\%). MS (secondary ion, Cs^{+}): $837-28 n\left([M-n \mathrm{CO}]^{+}, n=0-2\right.$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\nu($ CO $) 2047 s, 1984 s \mathrm{~cm}^{-1}$. Crystals were obtained by liquid diffusion of methanol into a dichloromethane solution.

Crystal data

$\left[\mathrm{Ru}\left(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{~N}_{2}\right)_{2}(\mathrm{CO})_{2}\right]$
$M_{r}=835.11$
Monoclinic, $P 2_{1 / \mathrm{o}} / n$
$a=13.5277$ (2) \AA
$b=12.4006$ (3) \AA
$c=15.6585$ (2) \AA
$\beta=93.176(1)^{\circ}$
$V=2622.70(8) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: integration
(Coppens, 1970)
$T_{\text {min }}=0.192, T_{\text {max }}=0.497$
49588 measured reflections
5998 independent reflections

Refinement

Refinement on F
$R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=0.028$
$S=1.09$
4200 reflections
334 parameters
$D_{x}=2.115 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 32959
reflections
$\theta=3-27^{\circ}$
$\mu=6.73 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, orange
$0.38 \times 0.21 \times 0.14 \mathrm{~mm}$

$$
\begin{aligned}
& 4200 \text { reflections with } I>3 \sigma(I) \\
& R_{\text {int }}=0.05 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-17 \rightarrow 17 \\
& k=-16 \rightarrow 16 \\
& l=-20 \rightarrow 20
\end{aligned}
$$

$$
\begin{aligned}
& w= {\left[1-\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} / 36 \sigma^{2}(F)\right]^{2} / } \\
& {\left[1.39 T_{0}(x)-0.108 T_{1}(x)\right.} \\
&\left.+0.987 T_{2}(x)\right] \\
& \text { where } T_{i} \text { are Chebychev poly- } \\
& \text { nomials and } x=F_{\mathrm{c}} / F_{\max } \\
&(\text { Prince, } 1982 ; \text { Watkin, 1994) } \\
&(\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.95 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.75 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

Ru1-N11	$2.071(2)$	$\mathrm{Ru} 1-\mathrm{C} 2$	$1.956(3)$
$\mathrm{Ru} 1-\mathrm{N} 21$	$2.086(2)$	$\mathrm{Ru} 1-\mathrm{C} 112$	$2.090(3)$
$\mathrm{Ru} 1-\mathrm{C} 1$	$1.957(3)$	$\mathrm{Ru} 1-\mathrm{C} 212$	$2.093(3)$
$\mathrm{N} 11-\mathrm{Ru} 1-\mathrm{N} 21$	$165.18(10)$	$\mathrm{C} 1-\mathrm{Ru} 1-\mathrm{C} 112$	$172.86(12)$
$\mathrm{N} 11-\mathrm{Ru} 1-\mathrm{C} 1$	$97.02(12)$	$\mathrm{C} 2-\mathrm{Ru} 1-\mathrm{C} 112$	$85.23(12)$
$\mathrm{N} 21-\mathrm{Ru} 1-\mathrm{C} 1$	$91.87(12)$	$\mathrm{N} 11-\mathrm{Ru} 1-\mathrm{C} 212$	$91.05(11)$
$\mathrm{N} 11-\mathrm{Ru} 1-\mathrm{C} 2$	$92.13(11)$	$\mathrm{N} 21-\mathrm{Ru} 1-\mathrm{C} 212$	$76.88(11)$
$\mathrm{N} 21-\mathrm{Ru} 1-\mathrm{C} 2$	$98.29(12)$	$\mathrm{C} 1-\mathrm{Ru} 1-\mathrm{C} 212$	$91.21(13)$
$\mathrm{C} 1-\mathrm{Ru} 1-\mathrm{C} 2$	$98.38(14)$	$\mathrm{C} 2-\mathrm{Ru} 1-\mathrm{C} 212$	$169.44(13)$
$\mathrm{N} 11-\mathrm{Ru} 1-\mathrm{C} 112$	$76.62(11)$	$\mathrm{C} 112-\mathrm{Ru} 1-\mathrm{C} 212$	$85.72(11)$
$\mathrm{N} 21-\mathrm{Ru} 1-\mathrm{C} 112$	$93.71(11)$		

H atoms were included at idealized positions and made to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduc-

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
tion: $D E N Z O / S C A L E P A C K$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEPII (Johnson, 1976) in TEXSAN (Molecular Structure Corporation, 1997); software used to prepare material for publication: $C R Y S$ TALS.

We thank the Australian Research Council (ARC) for financial support and Johnson-Matthey Technology Centre for the generous loan of ruthenium salts. MGH holds an ARC Australian Professorial Fellowship. WKM thanks the University of Baghdad for a period of study leave, and the Australian Department of Education, Science and Training for an Endeavour Fellowship.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bruce, M. I., bin Shawkataly, O., Snow, M. R. \& Tiekink, E. R. T. (1987). Acta Cryst. C43, 243-245.
Coppens, P. (1970). The Evaluation of Absorption and Extinction in SingleCrystal Structure Analysis. Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. \& Shankland, K. (2000). MAXUS. Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.
Molecular Structure Corporation (1997). TEXSAN. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Patrick, J. M., White, A. H., Bruce, M. I., Beatson, M. J., Black, D. St. C., Deacon, G. B. \& Thomas, N. C. (1983). J. Chem. Soc. Dalton Trans. pp. 2121-2123.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
Willis, A. C., Mahdi, W. K. \& Humphrey, M. G. (2005). Acta Cryst. E61, m2335-m2337.
Willis, A. C., Mahdi, W. K. \& Humphrey, M. G. (2006). Acta Cryst. E62, m116m117.

